Structure of (-)-2,9-Dihydroxyverrucosane, a Novel Carbon Skeletal Diterpenoid from the Liverwort *Mylia verrucosa*

By AKIHIKO MATSUO,* HIROSHI NOZAKI, MITSURU NAKAYAMA, and Shûichi HAYASHI* (Department of Chemistry, Faculty of Science, Hiroshima University, Hiroshima 730, Japan)

and DAISUKE TAKAOKA

(Department of Chemistry, Faculty of Science, Ehime University, Matsuyama 790, Japan)

Summary A novel carbon skeletal diterpene diol isolated from the liverwort Mylia verrucosa has been shown to have the structure (1), containing a novel fused 3,6,6,5-tetracyclic ring system, on the basis of chemical and spectral evidence.

In the course of our investigations on terpenoids from liverworts, a novel carbon skeletal diterpene diol, (-)-2,9dihydroxyverrucosane, was isolated from an ethanolic extract of *Mylia verrucosa* Lindb. together with other diterpenoids having the same carbon skeleton, verrucosane. Structure (1) is proposed for the diol on the basis of the following experimental evidence.

Spectroscopic evidence showed that (1), $C_{20}H_{34}O_2$, m.p. 153—154 °C, $[\alpha]_D - 72^\circ$, was a saturated tetracyclic diterpenoid containing a cyclopropane ring $[\nu 3060, 1012, \text{ and } 1005 \text{ cm}^{-1}; \delta 0.1 \dots 0.7 (3H, \text{ complex m})]$, an isopropyl group $[\nu 1385, 1375, \text{ and } 1170 \text{ cm}^{-1}; \delta 0.83 \text{ and } 0.90 \text{ (each 3H, d, } J 7 \text{ Hz})]$, 3 tertiary methyl groups $[\delta 0.77, 1.03, \text{ and } 1.20 \text{ (each 3H, s)}]$, and 2 secondary OH groups $[\nu 3525, 3400, \text{ and } 1030 \text{ cm}^{-1}; \delta 3.45 \dots 3.80 (2H, \text{ complex m})]$. This

structure was supported by the off-resonance ${}^{13}C$ n.m.r. spectrum which showed 3 singlets (δ 23·4, 36·8, and 48·5 p.p.m.), 7 doublets (δ 25·2, 29·1, 40·3, 43·0, 46·3, 73·4, and 73·5 p.p.m.), 5 triplets (δ 18·3, 21·8, 32·9, 42·3, and 43·9 p.p.m.), and 5 quartets (δ 15·1, 19·1, 21·2, 22·2, and 23·4 p.p.m.).

The diol (1) gave the monoacetate (2), $C_{22}H_{36}O_3$, $[\alpha]_D - 68^{\circ}$ which contained an equatorial OH [δ 3.55 (1H, d, J 10 Hz)] and an axial acetoxy-group [δ 4.74 (1H, t, J 2.5 Hz)] along with the original cyclopropane, isopropyl, and 3 tertiary methyl groups.[†] Compound (1) also produced the hydroxy-ketone (3), $C_{20}H_{32}O_2$, m.p. 111—112 °C, $[\alpha]_D - 151^{\circ}$, having an equatorial OH [δ 3.67 (1H, d, J 8.5 Hz)] and a sixmembered ring ketone containing an adjacent active methyl-ene besides the original groups. The spectral data of the two derivatives showed that (1) had the following two partial units: \geq C-CH(OH)-CH and \geq C-CH₂-CH(OH)-C \leq .

The monoacetate (2) and the hydroxy-ketone (3) were, respectively, converted into the unsaturated acetoxyalcohol (4), $C_{22}H_{36}O_3$, and the unsaturated keto-alcohol (5), $C_{20}H_{32}O_2$, m.p. 133–135 °C, $[\alpha]_D - 35^\circ$, in good yields. The spectral data of these products suggested the presence of a

[†] The ¹H n.m.r., i.r., and mass spectra of all new compounds (1)—(15) were consistent with the proposed structures.

Reagents: i, Ac₂O in pyridine; ii, CrO₃ in acetone; iii, $0.5 \text{ M} \text{ H}_2\text{SO}_4$ in acetone; iv, H₂-PtO₂; v, m-ClC₆H₄CO₃H; vi, 5% NaOH in methanol; vii, Ac₂O; viii, POCl₃ in pyridine; ix, OsO₄ in benzene; x, NaIO₄.

trisubstituted double bond bearing a methyl group and a new secondary OH instead of the cyclopropane ring and the original secondary OH. Compound (4) was oxidized to the acetoxy-ketone (6), C₂₂H₃₄O₃, m.p. 110-111 °C, [α]_D -102°, which contained two newly formed active methylene groups (two AB-systems) and a trisubstituted double bond bearing a methyl group. Accordingly, (6) was deduced to be a seven-membered ring ketone including the partial structure, \geq C--CH₂-CO-CH₂-C(Me)=CH-CH \leq . The formation of compounds (4) and (5) could be reasonably explained in terms of homoallylic ring expansion of a cyclopropyl methanol unit in which, as shown by Gasie *et al.*,¹ the newly formed secondary OH is cis to the original secondary OH. Furthermore, the cyclopropane ring should have the same β -configuration as that of the C-1 methine proton because this proton was shielded so that its resonance was at δ ca. 0.9 by the anisotropic effect of the cyclopropane ring.² This was confirmed by a decoupling experiment between the C-1 and C-2 protons (δ 3.55, d, J 10 Hz) in the spectrum of the hydroxy-acetate (2).

The homoallylic alcohol (5) could be transformed to the dihydro-compound (7), $C_{20}H_{34}O_2$, m.p. 116.5—118 °C, the seven-membered ring lactone (8), $C_{20}H_{34}O_3$, m.p. 122.5—123 °C, and the acid (9), $C_{20}H_{36}O_4$, and then into the sixmembered ring lactone (10), $C_{20}H_{34}O_3$. The formation of the lactone (10) showed that the junction between the A and B rings was *trans*, *i.e.* the tertiary C-7 methyl group had the α -configuration. From the hydroxy-lactone (10) the cyclopentene (11), $C_{20}H_{32}O_2$, with a trisubstituted double bond was obtained. Assuming the dehydration proceeds in the *trans*-direction, the B-c ring junction should be *trans*. The remaining c ring must consist of a cyclopentane ring bearing an isopropyl group whose presence was indicated by the doublet at 1380 cm⁻¹ and an absorption at *ca*. 1170 cm⁻¹ in the i.r. spectra of all derivatives.³

The homoallylic alcohol (5) was oxidized to the 1,2,4-triol (12), $C_{20}H_{34}O_4$, m.p. 127.5—129 °C, glycol fission of which gave directly the hemiacetal (13), $C_{20}H_{32}O_4$. When the acetate (14), $C_{22}H_{34}O_5$, derived from the hemiacetal (13), was kept for 3 h in 5% methanolic NaOH at room temperature,

the 3,4-disubstituted acetophenone (15), $C_{20}H_{28}O_2$, [λ (EtOH) 257.5 nm (ϵ 4600); v 1700, 1680, and 1600 cm⁻¹; δ 0.77 (6H, d, J J Hz), 0.85, 2.06, 2.33, and 2.52 (each 3H, s), 3.83 (1H, d, J 8 Hz), 7.22 (1H, d, J 8 Hz), 7.67 (1H, dd, J 8 and 2 Hz) and 7.87 (1H, d, J 2 Hz)] was obtained in good yield. The size of the coupling (8 Hz) of the signal at δ 3.83 assigned to the benzyl methine proton indicates that the cyclopentane ring is in the envelope conformation with the C-13 and C-14 hydrogens trans-diaxial. This structure was supported by the ¹³C n.m.r. spectrum: $6 \times s$ (δ 212·1, 197·3, 143·2, 141·5, 135.0, and 59.1 p.p.m.), $6 \times d$ (δ 130.6, 128.3, 126.1, 53.3, 48.6, and 31.2 p.p.m.), $2 \times t$ (δ 38.2 and 27.1 p.p.m.), and $6 \times q$ (δ 26.2, 25.7, 22.0, 21.5, 20.5, and 19.2 p.p.m.). The formation of the acetophenone derivative (15) from the acetylated hemiacetal (14) is presumed to take place via hydrolysis, aldol condensation, dehydration, and retro-Michael-type reaction, successively.

The stereostructure (1)^{\ddagger} deduced contains a novel fused 3,6,6,5-tetracyclic ring system in the cis-trans-anti-transconfiguration.

We thank the Japanese Ministry of Education for financial support and the Japan Society for the Promotion of Science for supporting D. T. as a visiting investigator at Hiroshima University.

(Received, 7th October 1977; Com. 1123.)

‡ Recently the structure and absolute configuration of (1) were confirmed by X-ray analysis of its mono-p-bromobenzoate (Y. Kushi, H. Nozaki, A. Matsuo, M. Nakayama, S. Hayashi, D. Takaoka, and N. Kamijo, full paper in preparation.)

¹ M. Gasie, D. Whalen, B. Johnson, and S. Winstein, *J. Amer. Chem. Soc.*, 1967, **89**, 6382. ² S. Forsen and T. Norin, *Tetrahedron Letters*, 1964, 2845. ³ L. J. Bellamy, 'The Infra-red Spectra of Complex Molecules,' Methuen, London and Wiley, New York, 1964); K. Nakanishi, 'Infra-red Spectra,' Nankodo, Tokyo, 1966.